

PLEASE STAND BY

Insidious Implicit Windows Trust
Relationships

7 June 2013 – BSides Detroit
James Foster

Note about where to get these slides later and
whether or not this is being recorded.

Note to folks reading these slides and notes directly:
the word TRANSITION in the notes is just a reminder
to me that I have animations or transitions on that
slide. You can ignore it in the PDF version.

None of the information presented here is original
work, it's all stuff other people have figured out. I'm
just trying to spread the knowledge.

Who am I?

● James (Jim) Foster
● Based in the Detroit area
● Principal Consulting Engineer on a sweet

Security Assessment Team

This Security Assessment Team has been around
~15 years, including the authoring of some well
known tools and related awesomeness.

Who am I?

● I do:
● Security assessments / penetration tests
● Incident response
● Whatever other security related stuff comes up

● I have:
● ~18 years of experience in various IT roles; the last

~9 in IT security, doing lots of different stuff
● BSCS, CISSP, GCIH

Intended audience

● Not pentesters (they already know this)

● Non-security IT folks
● IT security folks who are busy with other things
● Those tasked with supporting / defending

Windows systems, especially

Show of hands

How many folks here are:
new to all this?
straight IT (no security)?
IT with some security responsibility?
full time IT security?
attackers?
anything else?

Primarily tasked with supporting an Active Directory
domain, or domain-member systems? Of people with
their hands down, how many of their systems
authenticate against a domain, or are administered
from a domain-member system?

Why this presentation?

● Not enough people know about this
● Some that know it don't fully understand it
● Pentesters will use this against you (common

problem we find during assessments)
● Bad guys (internal and external) will use this

against you
● APT1 will use this against you

TRANSITION

Before I was an attacker, I fell into the second
category.

Remember: I didn't discover any of the information
presented here. I'm just good at summarizing and
explaining.

Steps of APT style intrusion

1) Spearphish user

2) Own user's box

3) …

4) Profit!
THIS

TRANSITION

Part of step 3 is exploiting implied trust relationships.
Often this is a big part of “move laterally” and
“escalate privileges”.

Now that you're fully convinced how important this
topic is, let's go.

Two kinds of trusts

● Explicit – these you intend to exist
● Implicit (implied) – these you don't

Explicit

● Loaning your car keys to your friend (to use
your car)

● Domain A trusts Domain B to authenticate
users

● Hosts.equiv (don't do this)
● Web single sign on (e.g. OpenID)

TRANSITION

In the last case, the Relying Parties (websites you're
trying to login to) explicitly trust third-party Identity
Providers (eg, Google) to authenticate you.

Implicit

● Extra set of house keys are in the glove box
● User's password in domain A == their password

in domain B
● LinkedIn password == online banking password
● Email account for online banking password

resets == online banking
● Same local administrator password on all client

PCs

TRANSITION

Implicitly Insidious

● These are nasty things
● Matt Honan (not the whole hack, but Twitter →

Gmail → me.com)
http://www.wired.com/gadgetlab/2012/08/apple-amazon-mat-honan-hacking/all/

● APT1 (Mandiant report) http://intelreport.mandiant.com/

● Separate PCI domain
● Windows to non-Windows

TRANSITION

They wanted Matt's Twitter account. It used his
Gmail account for password reset/recovery, so they
needed that first. His Gmail account used his
me.com (Apple) account for password
reset/recovery. They knew how to get Apple
accounts (a different attack), so once they got that,
they got his Gmail and Twitter for free.

The last two are stories from assessments.

Focus on Windows

● You've got the general idea
● Let's see why implicit trusts matter so much in

Windows

First, LM / NTLM

● LM / NTLM password hashing algorithm
● LM / NTLM network authentication protocol
● These are two different things, although the first is

used in the second
● I really wish one of these was called something

else, because this is confusing

● I will try and say “NTLM hash” and “NTLM
authentication” to differentiate the two

TRANSITION

I'm just going to say NTLM from now on since it's
easier, and this all applies to environments that
“aren't using LM anymore” anyway.

NTLM password hashing algorithm

● Creates a fixed-length hash from a
variable-length password

● For our purposes, similar enough to any other
hashing mechanism like MD5 or SHA-1

● Easy to go forward, hard to go backward
● Hashes of the password “password”:

● LM: E52CAC67419A9A224A3B108F3FA6CB6D
● NTLM: 8846F7EAEE8FB117AD06BDD830B7586C

● Note the lack of salt

TRANSITION

What does the lack of salt mean?

Can use rainbow tables.

Users with the same password will have the same
hash, regardless of username, system, domain,
version of Windows, language, etc.

NTLM network authentication
protocol

● Main network authentication protocol for
Windows (yeah, Kerberos in Active Directory)

● Steps:

1) Create NTLM hash of password

2) Blah blah, client/server challenges, blah blah

3) Do math and hashes with the NTLM hash and
challenges, send stuff back and forth, blah blah

● Note the input to steps 2 and beyond is just the
NTLM hash

TRANSITION

The details of steps 2 and beyond don't matter for
our purposes. The output of step 1 is just the NTLM
hash of the password, with nothing else added.

So what does this mean for NTLM authentication?

What if we have a user's hash, but don't know their
password (couldn't crack it, whatever).

Doesn't matter, because the hash works just as well.

Hashes == passwords

● (for NTLM authentication)
● Often called “pass-the-hash” (PTH)
● And not just for the one user – for all users who

have the same password

Why so bad in Windows?

● NTLM authentication everywhere
● Design called for single sign on (SSO)
● Hashes == passwords (for all users with same

password)
● Pervasive problem, easy to exploit
● Uses legitimate protocols, existing accounts
● You can't tell the difference between an

authentication that started with the password or
one that started with the hash

TRANSITION

After all, do you want to have to re-type your
password for every new Windows resource your
system connects to?

For SSO to work, the system has to either know your
password (or its hash in NTLM authentication) or
have some token (like in Kerberos).

Windows implicit trust
relationship types

● Local account
● Cached credential
● Access token

Local account

● Password hashes for local accounts are stored
locally on disk (persist as long as the account
exists)

● These can be accessed by any local admin
● Remember that password hashes ==

passwords for NTLM auth types via PTH
● Therefore, any local admin can assume the

identity of any local account on that box

TRANSITION

Local account

● Once you have the hashes, you can try them
other places

● You can try them with other accounts
● Against other similar systems (clients, servers,

etc.)
● Against the domain (or other domains)
● Looks like regular Windows logon

successes/failures, normal protocols

You might guess that this password (hash) is the
same for this same username on other systems.
Often you'd be right.

You might guess that this password (hash) is the
same for other usernames on other systems.
Sometimes you'd be right.

Sometimes it's the same in the domain, too.

Local account

● On a domain controller, all domain accounts are
just “local accounts” in this sense

● Get “local admin” on a domain controller, get
the hashes of all domain accounts

● Yay!

This may seem obvious. In order to compromise an
entire domain and steal all of its users' hashes, you
just need to compromise a domain controller and
you're done.

Cached credentials

● Password hashes for domain accounts may be
cached on disk on domain-connected systems

● Allow domain accounts to logon to
domain-connected systems when not
connected to the domain (laptops)

● Persist for configurable # of logons
● These can be accessed by any local admin

TRANSITION

Cached credentials

● These hashes can't be used for PTH (they are
salted)

● To be useful, you have to crack the hashes to
obtain the password (veeeery slow)

● If cracked, the password could then be used to
logon to this domain account

● The password could also be tried against other
accounts in the domain or local on other
systems – but you had to crack it first

TRANSITION

Of course, if the password is trivial, it doesn't matter
if the cracking is “slow”, you'll get it in a few seconds
anyway.

This has allowed me to compromise a domain, but
it's really the least useful of the three kinds of implied
trusts. So we'll move on.

Access tokens

● Created in memory upon a successful interactive
logon

● Hold the user's authentication information and
other account attributes (group memberships, etc.)
used to authenticate and gain authorization to
other systems/objects (enables SSO, etc.)

● Not written to disk, so erased by a reboot
● However, not erased by logging off
● These can be accessed by any local admin

TRANSITION

Sometimes people call these “account tokens”,
“logon tokens”, or just “tokens”.

Note that just mapping a drive does not create an
interactive logon to the target, so this is not enough
to create an access token.

Access tokens

● Contain LM and NTLM password hashes (not salted, so
PTH works)

● Did I mention these can be read by any local admin?
● Therefore, any local admin can assume the identity of any

user who logged in (interactively) since the last reboot
● Works for local and domain accounts, but you already have

hashes for the local accounts, so who cares
● Use a domain account against the domain and any

domain-connected system

TRANSITION

We just love access tokens belonging to domain
admins. Tasty.

Show of hands

How many people here have a domain admin
account?

Have you ever logged on to a system and then didn't
reboot it afterwards?

A user's system?

All this for $9.99? Can you believe it?

But wait, there's more!

● Access tokens also contain the account's clear
text password in memory

● No need for PTH or cracking
● Now can get access to services that don't use

NTLM authentication (RDP, non-Windows,
websites, etc.)

TRANSITION

This has only become widely known in the past
couple years. The first tool to recover these
passwords from memory was mimikatz, but WCE
and others (Metasploit, etc.) do it too.

How many folks already knew this?

This should have been obvious, since features exist
to allow SSO to non-NTLM auth services (HTTP
Digest, etc.), which would necessitate the clear text
password. Also, needed to renew Kerberos ticket.

Summary table
Thing Try to

crack?
PTH? Clear text

password
for free?

How's it get
there?

How long these stay
around?

Local account
hashes

Yes Yes No Local account
exists

As long as account
exists

Cached
credentials of
domain
accounts

Yes
(slow)

No No Domain
account has
to logon
interactively

Configurable # of
logons

Access tokens
of local and
domain
accounts

Yes Yes Yes Account has
to logon
interactively

Since last reboot
(usually)

● All it takes is local admin access!
● (and maybe some AV evasion or disabling)

The tools that are used to actually obtain any of this
information (hashes/tokens/passwords) and assume
the identity of others tend to be considered “hacking
tools” by most AV products and so will be detected
and/or stopped. But you're already a local admin, so
usually you can disable, reconfigure or evade AV.

AV is not a sufficient protection against these attacks.

So, implicit trusts

● Own a box, own all local accounts
● Local account having same password across

multiple systems – own them all
● Own a box, (maybe) own all domain accounts

that logged on within the last # logons
● Own a box, own all accounts that logged on

since the last reboot
● Any other account on any other local box or in

the domain share that password? Own that too.

TRANSITION

Nightmare

● Users granted local admin to their own box
● Same local Administrator password on all user

boxes...
● ...including boxes on the desks of IT staff
● IT staffer logs into her own box with domain

admin account
● All users could own the domain simply via trust

relationships

TRANSITION

It's also bad when you have servers where lots of
users, including privileged ones, logon interactively.

Although not completely tested or studied, we have
seen most domain users' access tokens on an
Exchange server in at least one environment. This
implies that at least in some situations, Outlook's
connection to the Exchange server constitutes an
interactive logon and creates an access token there.

We make graphs

● Local admin account trusts
● Domain admin access token trusts

These graphs are from a recent internal assessment.
Network had around 1,700 Windows boxes, we
sampled about 1,500 of them to get the data for
these graphs.

You can't read the labels on anything in the graphs
on purpose.

Blue ovals are hosts, red boxes are credentials
(username/password combination), and yellow spots
are the domains (domain controllers, to be specific).

The “credentials” in this one are local administrative
accounts, so this represents local account trusts for
administrative level users (admin on hosts and/or the
domain controllers).

~1,400 hosts involved in trusts with at least one
other, many with many others, including the domain.

Blue ovals are hosts, red boxes are credentials
(username/password combination), and yellow spots
are the domains (domain controllers, to be specific).

The “credentials” in this one are local admin
accounts, so this shows local account trusts for
admin level users (admin on hosts and/or the domain
controllers) EXCEPT that this time, the actual
“Administrator” accounts are excluded. In other
words, it's the same as the previous graph, if they
were to fix just all of the local “Administrator”
accounts. Only 129 hosts now involved in local
account trust relationships. So by fixing the local
“Administrator” account on all their boxes, they can
achieve an order of magnitude improvement in #
hosts involved.

Blue ovals are hosts, red boxes are credentials
(username/password combination), and yellow spots
are the domains (domain controllers, to be specific).

The “credentials” in this one are domain admin
access tokens, so this represents access token
trusts for domain admins only.

Mitigation

● How do we fix this?

● I've used up all my time explaining the problem
● Have a nice day!

Just kidding, I hope.

Mitigation

● Microsoft's pass-the-hash mitigation paper

● Don't let them get hashes/tokens/passwords
(local admin) in the first place
● Patch, good passwords, firewalls, etc.
● Application control / whitelisting
● Users not local admins would be good

Does two factor auth (smart cards, biometrics, etc.)
fix this? Haven't tested, but probably not, due to the
nature of the problem.

Mitigation

● Minimize the number of
hashes/tokens/passwords they can get
● Limit cached credentials
● Reduce number of local accounts, especially

administrative ones
● Limit number of interactive logons
● Reboot frequently?

Mitigation

● If they do get hashes/tokens/passwords, make
them useless to move around with
● No shared passwords
● Disable local admin accounts
● Turn off network access to unnecessary accounts

(network and RDP)

Mitigation

● Limit lateral movement
● Client firewalls (not Windows firewall in “domain”

mode)
● Network segmentation
● Client isolation (private VLANs)

For these types of attacks, we're talking about
Windows networking ports (135-139, 445) for the
most part.

Mitigation

● Limit privilege escalation – protect privileged
account hashes/tokens, especially domain
admins
● Reduce number of privileged accounts
● Privilege separation
● Only use privileged accounts on a limited number of

more trusted, more secured and isolated hosts

LAST SLIDE

References and links

● Microsoft “Mitigating Pass-the-Hash (PtH) Attacks and Other
Credential Theft Techniques” paper:
http://www.microsoft.com/en-us/download/details.aspx?id=36036

● SANS info on incident responding safety:
http://computer-forensics.sans.org/blog/2012/02/21/protecting-privileged-domain-account-safeguarding-passwor
d-hashes

● More good SANS info:
http://computer-forensics.sans.org/blog/2012/03/21/protecting-privileged-domain-accounts-access-tokens

● All the fgdump, Medusa, Praeda, OWNR and other
awesomeness you could ever hope for: http://www.foofus.net

● Windows Credential Editor (formerly Pass The Hash Toolkit):
http://www.ampliasecurity.com/research/wcefaq.html

● Mimikatz: http://blog.gentilkiwi.com/mimikatz

● Skip Duckwell's PTH blog: http://passing-the-hash.blogspot.com/

The end

Special thanks to the fine folks at foofus.net!

None of the information presented here is original
work, it's all stuff other people have figured out. Too
many to thank.

